You are here
Fishes / Poissons
Mormyridae
Who's online
There are currently 0 users online.
EOL Text
Barcode of Life Data Systems (BOLD) Stats
Specimen Records:481
Specimens with Sequences:539
Specimens with Barcodes:426
Species:95
Species With Barcodes:92
Public Records:135
Public Species:51
Public BINs:30
Collection Sites: world map showing specimen collection locations for Mormyridae
Data of fish populations in African freshwaters are scarce and there are no mormyrid species known to be threatened and with extinction and none are CITES-listed. This is not to say that particular species are not under threat of local extinction in areas impacted by human activity, including over-fishing, and development.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Sullivan, John P., Sullivan, John P., Africhthy |
Source | http://mormyrids.lifedesks.org/pages/2022 |
The family Mormyridae, sometimes called "elephantfish" (more properly freshwater elephantfish), are freshwater fish in the order Osteoglossiformes native to Africa. It is by far the largest family in the order with around 200 species. Members of the family are popular, if challenging, aquarium species. These fish are also known for having large brain size and unusually high intelligence.
They are not to be confused with the Australian ghost shark (Callorhinchus milii) which is sometimes referred to as the "elephantfish", but is better known as the elephant shark in the scientific community.
Description and biology[edit]
The elephantfishes are a diverse family, with a wide range of different sizes and shapes. The smallest are just 5 centimetres (2.0 in) in adult length, while the largest reach up to 1.5 metres (4.9 ft). They do, however, have a number of unique features in common. Firstly, the cerebellum (part of the brain) is greatly enlarged, giving them a brain to body size ratio similar to that of humans (though other sources give the brain/body proportion as 'similar to that of birds and marsupials'; Helfman, Collette & Facey 1997, p. 191). This is likely to be related to the interpretation of bio-electrical signals. Secondly, the semicircular canals in the inner ear have an unusual structure and are associated with a gas-filled bladder entirely separate from the main swim bladder.[1]
Some species possess modifications of the mouthparts to facilitate feeding upon small invertebrates buried in muddy substrates. The shape and structure of these leads to the popular name of "elephant nosed fish" for those species with particularly prominent mouth extensions. The extensions to the mouthparts usually consist of a fleshy elongation attached to the lower jaw. They are flexible, and equipped with touch, and possibly taste, sensors. Their mouths are non-protrusible, and their head (including the eyes), the dorsum and belly are covered by a thin layer of skin that is perforated with small pores leading to electroreceptors. Only a single gonad is present, located on the left side of their body.[2] Mormyridae and their close relative Gymnarchus are also unique in being the only vertebrates where the male sperm cell doesn't have a flagellum.[3]
Among those members of the family lacking extended mouthparts, the body shape and general morphology of the fishes has led to some being known among aquarists by the name of "baby whale", despite the fact that true whales are mammals. Other "mormyrid mammalian misnomers" include the term "dolphin fishes", in reference to certain members of the Genus Mormyrops.
Electric fields[edit]
Elephantfishes are notable for their ability to generate weak electric fields that allow the fishes to sense their environment in turbid waters where vision is impaired by suspended matter.[1] The generation of these electric fields and their use in providing the fishes with additional sensory input from the environment is the subject of considerable scientific research, as is research into communication between and within species.
Electric fish can be classified into two types: pulse fish or wave fish. Gymnarchus niloticus is a wave fish, producing a near-sinusoidal discharge of around 500 Hz. The electric discharge is produced from an electric organ that evolved from muscle, as can also be seen in Gymnotiform electric fish, electric rays and skates. The convergent evolution between the South American Gymnotiforms and the African Mormyridae is remarkable, with the electric organ being produced via the substitution of the same amino acid in the same voltage-gated sodium channel despite the two groups of fish being on different continents and the evolution of the electric sense organ being separated in time by around 60 million years.
Classification[edit]
There are about 200 species of elephantfish, grouped into two subfamilies, Mormyrinae and Petrocephalinae. The latter has only a single genus:
Family Mormyridae
- Subfamily Mormyrinae
- Boulengeromyrus Taverne & Géry, 1968
- Brienomyrus Taverne, 1971
- Campylomormyrus Bleeker, 1874
- Cyphomyrus Pappenheim, 1906
- Genyomyrus Boulenger, 1898
- Gnathonemus Gill, 1863
- Heteromormyrus Steindachner, 1866
- Hippopotamyrus Pappenheim, 1906
- Hyperopisus Gill, 1862
- Isichthys Gill, 1863
- Ivindomyrus Taverne & Géry, 1975
- Marcusenius Gill, 1862
- Mormyrops J. P. Müller, 1843
- Mormyrus Linnaeus, 1758
- Myomyrus Boulenger, 1898
- Oxymormyrus Bleeker, 1874
- Paramormyrops Taverne, Thys van den audenaerde& Heymer, 1977
- Pollimyrus Taverne, 1971
- Stomatorhinus Boulenger, 1898
- Subfamily Petrocephalinae
- Petrocephalus Marcusen, 1854
References[edit]
- ^ a b Greenwood, P.H. & Wilson, M.V. (1998). Paxton, J.R. & Eschmeyer, W.N., ed. Encyclopedia of Fishes. San Diego: Academic Press. p. 84. ISBN 0-12-547665-5.
- ^ Communication Behavior and Sensory Mechanisms in Weakly Electric Fishes
- ^ Mormyridae | Mormyridae - African weakly electric fishes
- Froese, Rainer, and Daniel Pauly, eds. (2006). "Mormyridae" in FishBase. January 2006 version.
- One of several papers on electrogenesis and electric field sensing in Gnathonemus petersi
- Detailed research paper on the sensory and central nervous systems in Gnathonemus petersi
- Another page covering the electrosensory capabilities of Mormyrid fishes
- Mormyrids in the aquarium
- summary of a research on the blue jawed elephant nose from JEB
License | http://creativecommons.org/licenses/by-sa/3.0/ |
Rights holder/Author | Wikipedia |
Source | http://en.wikipedia.org/w/index.php?title=Mormyridae&oldid=654848478 |
With more than 200 species in 20 genera, the Family Mormyridae is a modern radiation within the Osteoglossomorpha, an ancient lineage of teleost fishes in which most other living groups are species-poor. Mormyrids are found only in Africa, in freshwater habitats over most of the continent with the exception of the Sahara, northernmost Mahgreb and southernmost Cape provinces. Mormyrids reach their highest diversity in the river systems of Central and West Africa and are often the numerically most abundant kind of fish in riverine habitats.
Mormyrid fishes have long served humans as an important food source along Africa's inland waterways. Ancient Egyptians accurately depicted mormyrids on the walls of their tombs and even worshipped Mormyrus in the temple of Oxyrhynchus. However, scientists only discovered mormyrids' most unusual characteristic in the latter half of the 20th Century: an active electric sense by means of which they orient to their environment and communicate (see "Electric Organ Discharge" below). Mormyrid fishes have since become a model system for research into vertebrate sensory biology, behavior, and communication. They are also popular in the tropical fish hobby where they are known as "elephant-nose fish" and "baby whales."
Adult mormyrids range from about 4 centimeters to 1.5 meters in length and vary considerably in morphology. Most species of genera Petrocephalus, Pollimyrus and Stomatorhinus are short, laterally compressed, deep-bodied fishes with blunt, rounded snouts and small, often inferior to subinferior mouths. Others, such as species of Mormyrops and Isichthys, are elongate with more cylindrical bodies, with terminal mouths. Species of Campylomormyrus and some Mormyrops and Mormyrus have long tubular snouts used for extracting invertebrates from sediment and root masses (Marrero & Winemiller, 1993). Others in genera Marcusenius, Gnathonemus, and Genyomyrus possess a variously developed fleshy protuberance on the chin that functions in electrolocation of prey organisms. In all mormyrids, the mouths are non-protrusible and small cycloid scales cover all but the head. The head (including the eyes), dorsum and belly are covered by a thin layer of skin beneath which lie electroreceptors of different varieties (see below). All mormyrids retain a full complement of paired and unpaired fins. The dorsal and anal fins lack spiny rays and are variable in length among the different genera. In many genera these fins are positioned far back on the body and are more or less symmetrically opposed about the midline. The caudal fin in mormyrids is deeply forked and has a distinctive rounded V-shape with symmetrical, scaled and fleshy dorsal and ventral lobes; it emerges from a narrow, cylindrical peduncle within which lies the electric organ.
In addition to specializations for electroreception which include an enlarged cerebellum, electroreceptors on the body surface, and an electric organ in the caudal peduncle, mormyrids have other specializations for acute audition: a gas-filled tympanic bladder coupled to the sacculus in each ear (Fletcher & Crawford, 2001). Males of the genus Pollimyrus, communicate not only electrically, but also acoustically, with elaborate courtship songs generated by muscles that vibrate the swim bladder (Crawford, 1997). Little is known about the role of acoustic communication in other genera.
Most mormyrids are nocturnal invertebrate-feeders. However, some species of the genus Mormyrops are piscivores. At night, Mormyrops anguilloides from Lake Malawi engage in a form of semi-cooperative "pack hunting" of sleeping cichlids (Arnegard & Carlson, 2005).
The sister-group to the Mormyridae is the monotypic family Gymnarchidae. Gymnarchus niloticus has a nilo-sudanic distribution and is also electrogenic, but its EOD resembles a continuous wave unlike like the pulsatile EODs produced by mormyrids. Together, the Mormyridae and the Gymnarchidae make up the Superfamily Mormyroidea. Gymnarchus and mormyrids share numerous anatomical characteristics—both related and unrelated to active electrolocation—and they are also the only vertebrates known to posses aflagellate sperm (Morrow, 2004).
Based on osteological characters, Taverne (1972) divided the Mormyridae into two subfamilies, the Petrocephalinae, containing only the genus Petrocephalus, and the Mormyrinae, containing the remaining genera. Molecular phylogenetic studies (Lavoué, 1999; Sullivan, 2000; Lavoué et al., 2003) have supported this division.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Sullivan, John P., Sullivan, John P., Africhthy |
Source | http://mormyrids.lifedesks.org/pages/2022 |
Mormyrids have a broader distribution than their Nilo-Sudanic sistergroup,Gymnarchus niloticus, including most of the African continent with the exception of the Sahara, northernmost Mahgreb and southernmost Cape provinces (Roberts, 1975) and are most diverse in the river systems of Central and West Africa.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Sullivan, John P., Sullivan, John P., Africhthy |
Source | http://mormyrids.lifedesks.org/pages/2022 |
Adult length of mormyrid species ranges from about 4 to about 150 centimeters.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Sullivan, John P., Sullivan, John P., Africhthy |
Source | http://mormyrids.lifedesks.org/pages/2022 |
Artificial dichotomous key to 19 genera of Mormyridae (Heteromormyrus pauciradiatus not included)
1.a. Nostrils close to one another and to the eye; mouth inferior, below the horizontal level of the eye; body short and rather deep; two simple (unsegmented) rays, visible on radiographs, at the origin of the dorsal fin. Petrocephalus (subfamily Petrocephalinae)
1.b. Nostrils separated from each other and from the eye; mouth terminal or inferior, in advance of the level of the eye, body deep or elongate; usually one simple ray at the origin of the dorsal fin. 2 (subfamily Mormyrinae)
2.a. Teeth in both jaws very small, slender and conical, irregularly arranged in several rows forming a villiform band; (additionally snout narrow and tubular, mouth terminal, chin with a tapering barbel-like appendage nearly as long as snout and pointing forwards). Genyomyrus
2.b. Teeth not as above, 3
3.a. Teeth extending along the entire edge of both jaws in a single series, 10-36 in each jaw; (additionally mouth terminal, well in advance of the level of the eye; body elongate, the depth more than 5.2 times into SL). Mormyrops
3.b. Teeth restricted to middle of each jaw, 3-10 in each jaw, 4
4.a. Dorsal fin more than two times the length of anal, originating directly above or in advance of pelvics. Mormyrus
4.b. Dorsal fin 0.10-1.75 times the length of the anal, its origin behind pelvics, 5
5.a. Dorsal fin very short, less than 0.20 times the length of the anal, and set far back on body; (additionally anal fin long with 58-68 rays). Hyperopisus
5.b. Dorsal fin 0.35-1.75 times the length of the anal fin, 6
6.a. Dorsal fin 1.2-1.75 times the length of the anal fin; dorsal fin origin anterior to anal fin origin, 7
6.b. Dorsal fin 0.35-1.1 times length of the anal fin; dorsal fin origin above or posterior to anal fin origin, 9
7.a. Pelvic fins closer to the anal than to the pectorals; body very elongate, at least 8-11 times as long as deep. Isichthys
7.b. Pelvic fins mid-way between anal and pectoral fins or closer to pectorals; body short to moderately elongate, 8
8.a. Symphysial mandibular teeth incisor-like and projecting beyond lower lip; body moderately elongate (depth < 24% SL), upper back gently convex. Myomyrus
8.b. Median pair of mandibular teeth unmodified; body moderately deep (depth >27% SL) and upper back gently to greatly convex. Cyphomyrus
9.a. Posterior nostril close to the border of the mouth. Stomatorhinus
9.b. Neither nostril close to the border of the mouth, 10
10.a. Snout very elongated and tubular, its length greater than the postorbital
length of the head. Snout turned downward. Campylomormyrus
10.b. Snout non-tubular, its length less than the post-orbital length of the head, 11
11. a. Prominent cylindrical barbel-like appendage under the chin, extending forward from below lower jaw. Gnathonemus
11.b. Appendage under chin reduced to fleshy swelling or absent altogether, 12
12. a. Submental appendage present, extending slightly beyond the end of the upper jaw. Marcusenius
12.b. Fleshy chin appendage not extending beyond end of upper jaw or absent altogether, 13
13.a. Dorsal and anal fins approximately equal in length and originating at the same vertical level, dorsal with 31-34 rays, anal with 31-35 rays. Hippopotamyrus (note: H. ansorgii and related forms will not key out here, but with Paramormyrops below)
13.b. Dorsal fin shorter than anal fin and with fewer than 30 rays, 14
14.a. Body moderately elongate, depth 18-22% SL, 15
14.b. Body moderately deep, more than 23% SL, 17
15.a. Anal and dorsal fins terminate at about the same level. Distal tips of last anal and dorsal rays not offset. 16
15.b. Anal fin extends beyond the end of dorsal. Distal tips of last anal and dorsal fin rays offset. Brienomyrus
16.a. Diffuse dark bar between origin of doral and anal fins absent. Paramormyrops
16.b. Diffuse dark bar between origin of doral and anal fins present. Hippopotamyrus ansorgii complex
17.a. Globular swelling under chin absent; mouth terminal, 18
17.b. Globular swelling under chin present; mouth subterminal, 19
18.a. Snout straight, short and blunt. Brevimyrus
18.b. Snout turned downward, long, cone-shaped. Boulengeromyrus
19.a. Posterior nostril closer to anterior nostril than to eye. Ivindomyrus
19.b. Posterior nostril closer to eye than to anterior nostril. Pollimyrus
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Sullivan, John P., Sullivan, John P., Hopkins, Carl D., Africhthy |
Source | http://mormyrids.lifedesks.org/pages/2022 |
Mormyrids occupy an ecological niche largely similar to that of other large group of freshwater weakly electric fishes, the ostariophysan South American gymnotiforms (Lowe-McConnell 1987). Fishes of both groups, with some exceptions, are nocturnal benthic invertebrate-feeders and have adapted to a number of different types of freshwater habitats. Interestingly, the widely separate phylogenetic positions of these two groups among non-electroreceptive teleost clades indicates independent evolution of their electrosensory systems (see Bass 1986c, Kramer 1990). Mormyrids are much more abundant and diverse in river and stream habitats than in lakes (in marked contrast to the African cichlids). Some form large schools near the bottom of pools, others are adapted for life in and near rapids (Roberts & Stewart 1976) smaller streams, marginal habitat, or swamps (Lowe-McConnell 1987). Rainy season spawning migrations from river mouths to upriver breeding habitats have been reported for some taxa (Daget 1957, Blake 1977). Little information exists regarding the reproductive behavior in mormyroids, although male Gymnarchus niloticus and Pollimyrus isidori are known to construct and guard elaborate floating nests in which larvae remain for some time after hatching (see Hopkins 1986).
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Sullivan, John P., Sullivan, John P., Africhthy |
Source | http://mormyrids.lifedesks.org/pages/2022 |